Phương trình đường tròn đi qua 3 điểm không thẳng hàng

Ngày đăng:

Phương trình đường tròn đi qua 3 điểm là chủ đề quan trọng trong chương trình toán học trung học cơ sở. Dưới đây là lý thuyết và bài tập về phương trình đường tròn qua 3 điểm được DINHNGHIA.COM.VN tổng hợp, cùng tìm hiểu nhé.

Bài toán: Cho ba điểm không thẳng hàng A, B, C. Viết phương trình đường tròn (C) đi qua 3 điểm này.

Trường hợp 1: Biết tọa độ 3 điểm

Trường hợp 1: Biết tọa độ 3 điểm
Trường hợp 1: Biết tọa độ 3 điểm

Lý thuyết lập phương trình đường tròn đi qua 3 điểm không thẳng hàng biết tọa độ 3 đỉnh

  • Bước 1: Gọi phương trình đường tròn (C) có dạng: (x^2+y^2-2ax-2by+c=0) với a^2+b^2-c>0
  • Bước 2: Thay tọa độ của A, B, C vào phương trình đường tròn (C) ta được một hệ phương trình 3 ẩn a, b, c.
  • Bước 3: Giải hệ trên ta được a, b và c.
  • Bước 4: Thay a, b và c vừa tìm được ở bước 3 vào phương trình đường tròn (C) đã gọi ở trên ta sẽ được phương trình đường tròn (C) cần tìm.

Bài toán viết phương trình đường tròn đi qua 3 điểm không thẳng hàng A, B và C có thể phát biểu thành bài toán viết phương trình đường tròn ngoại tiếp tam giác ABC.

Ví dụ cụ thể:

Ví dụ 1: Cho 3 điểm không thẳng hàng A(-1;2), B(6;1) và C(-2;5). Lập phương trình đường tròn (C) đi qua 3 điểm này.

Giải: Gọi phương trình đường tròn (C) đi qua ba điểm không thẳng hàng A, B, C có dạng (C): (x^2+y^2-2ax-2by+c=0)

Do A,B,C cùng thuộc đường tròn nên thay tọa độ A,B,C lần lượt vào phương trình đường tròn (C) ta được hệ phương trình:

(left{begin{matrix} 2a – 4b + c = -5 & 12a + 2b – c = 37 & 4a – 10b + c = -29 & end{matrix}right.)

(Rightarrow left{begin{matrix} a = 3 & b = 5 & c = 9 & end{matrix}right.)

=> Phương trình đường tròn đi qua ba điểm không thẳng hàng A, B, C tâm I (3 ; 5) bán kính r = 5 là: (x^2 + y^2 – 6x – 10y + 9 = 0) hoặc ((x – 3)^2 + (y – 5)^2 = 25)

Trường hợp 2: Biết tọa độ tâm và độ dài bán kính.

Lý thuyết tìm phương trình đường tròn đi qua 3 điểm biết tọa độ tâm và độ dài bán kính

  • Bước 1: Gọi tâm đường tròn là điểm I(a;b). Vì 3 điểm A, B và C thuộc đường tròn nên ta có: IA = IB = IC. Từ đây ta có hệ phương trình sau: (left{begin{matrix} IA^{2} = IB^{2} & IA^{2} = IC^{2} & end{matrix}right.[/latex]
  • Bước 2: Giải hệ phương trình trên cũng tìm được tọa độ của tâm I
  • Bước 3: Tìm bán kính R = IA = IB = IC
  • Bước 4: Thay tọa độ điểm I và bán kính R vào phương trình đường tròn dạng: [latex](x−a)^2+(y−b)^2=R^2)

Ví dụ cụ thể:

Ví dụ 2: Viết phương trình đường tròn tâm I đi qua 3 điểm không thẳng hàng A, B, C biết A(-1;2), B(6;1) và C(-2;5).

Lời giải:

Gọi tâm I của đường tròn (C ) có tọa độ ((x_I,y_I))

Ta có (IA^2 = (-1-x_I)^2+(2-y)^2 = (1+x_I)^2+(2-y_I)^2)

(IB^2 = (6-x_I)^2+(1-y_I)^2)

(IC^2 = (-2-x_I)^2+(5-y_I)^2 = (2+x_I)^2+(5-y_I)^2)

Giải hệ gồm 3 phương trình trên ta được (x_I=3; y_I=5), (R^2 = IA^2 = 25) => R = 5

=> Phương trình đường tròn đi qua ba điểm không thẳng hàng A, B, C tâm I(3;5) và bán kính R = 5 là:

(x^2 + y^2 – 6x – 10y + 9 = 0) hoặc ((x – 3)^2 + (y – 5)^2 = 25)

Xem thêm:

Trên đây là bài viết tổng hợp kiến thức viết phương trình đường tròn đi qua 3 điểm không thẳng hàng. Nếu có băn khoăn, thắc mắc hay góp ý xây dựng bài viết các bạn để lại bình luận bên dưới nhé. Cảm ơn các bạn,đừng quên chia sẻ nếu thấy hay nhé!

Xem nhiều

Bài tin liên quan

10 Đặc điểm nổi bật trên tủ lạnh Samsung Family Hub

Tủ lạnh là món phụ kiện không thể thiếu...

Pasta là gì? Cách phân biệt sự khác nhau giữa Pasta và Spaghetti

Thỉnh thoảng khi thưởng thức một số món châu...

Máy giặt Samsung báo lỗi 4C là gì? 5 Nguyên nhân và khắc phục

Trong quá trình sử dụng máy giặt, đôi khi...

Battle Pass là gì? 8 Game có Battle Pass phổ biến nhất năm 2023

Battle Pass là một thuật ngữ nói đến các...